Package: ReSurv 1.0.0

ReSurv: Machine Learning Models For Predicting Claim Counts

Prediction of claim counts using the feature based development factors introduced in the manuscript <doi:10.48550/arXiv.2312.14549>. Implementation of Neural Networks, Extreme Gradient Boosting, and Cox model with splines to optimise the partial log-likelihood of proportional hazard models.

Authors:Emil Hofman [aut, cre, cph], Gabriele Pittarello [aut, cph], Munir Hiabu [aut, cph]

ReSurv_1.0.0.tar.gz
ReSurv_1.0.0.zip(r-4.5)ReSurv_1.0.0.zip(r-4.4)ReSurv_1.0.0.zip(r-4.3)
ReSurv_1.0.0.tgz(r-4.5-any)ReSurv_1.0.0.tgz(r-4.4-any)ReSurv_1.0.0.tgz(r-4.3-any)
ReSurv_1.0.0.tar.gz(r-4.5-noble)ReSurv_1.0.0.tar.gz(r-4.4-noble)
ReSurv_1.0.0.tgz(r-4.4-emscripten)ReSurv_1.0.0.tgz(r-4.3-emscripten)
ReSurv.pdf |ReSurv.html
ReSurv/json (API)

# Install 'ReSurv' in R:
install.packages('ReSurv', repos = c('https://edhofman.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/edhofman/resurv/issues

On CRAN:

Conda:

5.87 score 2 stars 21 scripts 551 downloads 7 exports 183 dependencies

Last updated 5 months agofrom:4b03b27adb. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 15 2025
R-4.5-winOKMar 15 2025
R-4.5-macOKMar 15 2025
R-4.5-linuxOKMar 15 2025
R-4.4-winOKMar 15 2025
R-4.4-macOKMar 15 2025
R-4.4-linuxOKMar 15 2025
R-4.3-winOKMar 15 2025
R-4.3-macOKMar 15 2025

Exports:data_generatorIndividualDataPPinstall_pyresurvooslkhReSurvReSurvCVsurvival_crps

Dependencies:abindaskpassbackportsbase64encBBmiscbitbit64blobbootbroombshazardbslibcachemcallrcarcarDatacellrangercheckmateclicliprcmprskcolorspacecolourpickercommonmarkconflictedcorrplotcowplotcpp11crayoncurldata.tableDBIdbplyrDerivdigestdoBydplyrdtplyrEpietmevaluatefansifarverfastDummiesfastmapfontawesomeforcatsforecastFormulafracdifffsgarglegenericsggExtraggforceggplot2ggpubrggrepelggsciggsignifgluegoogledrivegooglesheets4gridExtragtablehavenherehighrhmshtmltoolshtmlwidgetshttpuvhttridsisobandjquerylibjsonliteknitrlabelinglaterlatticelifecyclelme4lmtestlubridatemagrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminiUIminqamodelrmunsellnlmenloptrnnetnumDerivopensslpbkrtestpillarpkgconfigplyrpngpolyclippolynomprettyunitsprocessxprogresspromisespspurrrquadprogquantmodquantregR6raggrappdirsrbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRcppTOMLRdpackreadrreadxlreformulasrematchrematch2reprexreshape2reticulaterlangrmarkdownrpartrprojrootrstatixrstudioapirvestsassscalesselectrSHAPforxgboostshinyshinyjssourcetoolsSparseMstringistringrsurvivalSynthETICsyssystemfontstextshapingtibbletidyrtidyselecttidyversetimechangetimeDatetinytextseriesTTRtweenrtzdburcautf8uuidvctrsviridisLitevroomwithrxfunxgboostxml2xtablextsyamlzoo

A Machine Learning Approach Based On Survival Analysis For IBNR Frequencies In Non-Life Reserving

Rendered fromManuscript_replication_material.Rmdusingknitr::rmarkdownon Mar 15 2025.

Last update: 2024-11-12
Started: 2023-12-21

Claim Counts Prediction Using Individual Data

Rendered fromcas_call.Rmdusingknitr::rmarkdownon Mar 15 2025.

Last update: 2024-11-12
Started: 2024-06-29

Exploring The Variables Importance

Rendered fromvariables_importance.Rmdusingknitr::rmarkdownon Mar 15 2025.

Last update: 2024-11-12
Started: 2023-08-14

Hyperparameters Tuning

Rendered fromhp_tuning.Rmdusingknitr::rmarkdownon Mar 15 2025.

Last update: 2024-11-12
Started: 2023-06-23

Simulate Individual Data

Rendered fromsimulate_individual_data.Rmdusingknitr::rmarkdownon Mar 15 2025.

Last update: 2024-11-12
Started: 2023-04-21