Package: ReSurv 1.0.0
ReSurv: Machine Learning Models For Predicting Claim Counts
Prediction of claim counts using the feature based development factors introduced in the manuscript <doi:10.48550/arXiv.2312.14549>. Implementation of Neural Networks, Extreme Gradient Boosting, and Cox model with splines to optimise the partial log-likelihood of proportional hazard models.
Authors:
ReSurv_1.0.0.tar.gz
ReSurv_1.0.0.zip(r-4.5)ReSurv_1.0.0.zip(r-4.4)ReSurv_1.0.0.zip(r-4.3)
ReSurv_1.0.0.tgz(r-4.4-any)ReSurv_1.0.0.tgz(r-4.3-any)
ReSurv_1.0.0.tar.gz(r-4.5-noble)ReSurv_1.0.0.tar.gz(r-4.4-noble)
ReSurv_1.0.0.tgz(r-4.4-emscripten)ReSurv_1.0.0.tgz(r-4.3-emscripten)
ReSurv.pdf |ReSurv.html✨
ReSurv/json (API)
# Install 'ReSurv' in R: |
install.packages('ReSurv', repos = c('https://edhofman.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/edhofman/resurv/issues
Last updated 9 days agofrom:4b03b27adb. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 15 2024 |
R-4.5-win | OK | Nov 15 2024 |
R-4.5-linux | OK | Nov 15 2024 |
R-4.4-win | OK | Nov 15 2024 |
R-4.4-mac | OK | Nov 15 2024 |
R-4.3-win | OK | Nov 15 2024 |
R-4.3-mac | OK | Nov 15 2024 |
Exports:data_generatorIndividualDataPPinstall_pyresurvooslkhReSurvReSurvCVsurvival_crps
Dependencies:abindaskpassbackportsbase64encBBmiscbitbit64blobbootbroombshazardbslibcachemcallrcarcarDatacellrangercheckmateclicliprcmprskcolorspacecolourpickercommonmarkconflictedcorrplotcowplotcpp11crayoncurldata.tableDBIdbplyrDerivdigestdoBydplyrdtplyrEpietmevaluatefansifarverfastDummiesfastmapfontawesomeforcatsforecastFormulafracdifffsgarglegenericsggExtraggforceggplot2ggpubrggrepelggsciggsignifgluegoogledrivegooglesheets4gridExtragtablehavenherehighrhmshtmltoolshtmlwidgetshttpuvhttridsisobandjquerylibjsonliteknitrlabelinglaterlatticelifecyclelme4lmtestlubridatemagrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminiUIminqamodelrmunsellnlmenloptrnnetnumDerivopensslpbkrtestpillarpkgconfigplyrpngpolyclippolynomprettyunitsprocessxprogresspromisespspurrrquadprogquantmodquantregR6raggrappdirsRColorBrewerRcppRcppArmadilloRcppEigenRcppTOMLreadrreadxlrematchrematch2reprexreshape2reticulaterlangrmarkdownrpartrprojrootrstatixrstudioapirvestsassscalesselectrSHAPforxgboostshinyshinyjssourcetoolsSparseMstringistringrsurvivalSynthETICsyssystemfontstextshapingtibbletidyrtidyselecttidyversetimechangetimeDatetinytextseriesTTRtweenrtzdburcautf8uuidvctrsviridisLitevroomwithrxfunxgboostxml2xtablextsyamlzoo
A Machine Learning Approach Based On Survival Analysis For IBNR Frequencies In Non-Life Reserving
Rendered fromManuscript_replication_material.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-11-12
Started: 2023-12-21
Claim Counts Prediction Using Individual Data
Rendered fromcas_call.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-11-12
Started: 2024-06-29
Exploring The Variables Importance
Rendered fromvariables_importance.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-11-12
Started: 2023-08-14
Hyperparameters Tuning
Rendered fromhp_tuning.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-11-12
Started: 2023-06-23
Simulate Individual Data
Rendered fromsimulate_individual_data.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-11-12
Started: 2023-04-21